Sains Malaysiana 52(10)(2023): 2815-2827

http://doi.org/10.17576/jsm-2023-5210-07

 

Purified Polysaccharides Extracted from Grey Oyster Mushroom [Pleurotus sajor-caju (Fr.) Sing.]  Stimulate Glucose Uptake in C2C12 Myotubes through the activation of AMP-Activated Protein Kinase (AMPK) and Glucose Transporter 1 (GLUT1) Proteins

(Polisakarida Dimurnikan Diekstrak daripada Cendawan Tiram Kelabu [Pleurotus sajor-caju (Fr.) Sing.] Merangsang Pengambilan Glukosa dalam Miotiub C2C12 melalui Pengaktifan Protein Kinase Diaktifkan AMP (AMPK) dan Protein Pengangkut Glukosa 1 (GLUT1))

 

KULWANIT PATNINAN1, DECHA SERMWITTAYAWONG1,*, SUPADA NUINAMWONG1, WIPAPAN KHIMMAKTONG1, KUSUMARN NOIPHA2 & NONGPORN HUTADILOK-TOWATANA1

 

1Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand

2Faculty of Health and Sports Science, Thaksin University, Paphayom, Phatthalung, 93110

Thailand

 

Diserahkan: 10 Mei 2023/Diterima: 7 September 2023

 

Abstract

The grey oyster mushroom [Pleurotus sajor-caju (Fr.) Sing.], an edible mushroom, has been known as a source of bioactive compounds, including polysaccharides.  Polysaccharides from this mushroom have been shown to possess antidiabetic activity both in vivo and in vitro.  However, antidiabetic mechanism of partially purified or purified polysaccharides from the gray oyster mushroom has not been characterized. In this study, we extracted and purified polysaccharides from gray oyster mushrooms and used them to investigate the antidiabetic mechanism in the context of C2C12 myotubes.  Using Fourier Transform Infrared spectroscopy (FTIR) analysis and enzymatic assay, we showed that the polysaccharide sample, namely 9S1-1, contains b-glucose, a-glucose, and mannose as the monosaccharide composition, and b-glucan is the major type of polysaccharide in the sample. This 9S1-1 sample dose-dependently stimulated glucose uptake in C2C12 myotubes. Further analysis showed that the sample activated the AMP-activated protein kinase (AMPK) but not Akt serine/threonine kinase (AKT) phosphorylation, suggesting that the stimulation is AMPK-dependent. Moreover, we showed that compound c, an inhibitor of AMPK, inhibited glucose uptake in 9S1-1-stimulated cells, confirming the requirement of AMPK in the glucose uptake activated by the 9S1-1 sample.  In addition, it promoted glucose transporter protein type 1 (GLUT1) but not GLUT4 protein expression. These results suggest that GLUT1 may be responsible for the stimulation of glucose uptake in 9S1-1-activated cells. Together, these data illustrate the antidiabetic mechanism of polysaccharides isolated from the gray oyster mushroom and the potential use of the polysaccharide as an antidiabetic agent. 

 

Keywords: AMPK; antidiabetic; GLUT1; Gray oyster mushroom; Pleurotus sajor-caju

 

Abstract

Cendawan tiram kelabu [Pleurotus sajor-caju (Fr.) Sing.], cendawan yang boleh dimakan, telah dikenali sebagai sumber sebatian bioaktif, termasuk polisakarida. Polisakarida daripada cendawan ini telah terbukti mempunyai aktiviti antidiabetis secara in vivo dan in vitro. Walau bagaimanapun, mekanisme antidiabetis bagi polisakarida yang telah dimurnikan sebahagian atau dimurnikan daripada cendawan tiram kelabu belum dicirikan. Dalam kajian ini, kami mengekstrak dan memurnikan polisakarida daripada cendawan tiram kelabu dan menggunakannya untuk mengkaji mekanisme antidiabetis dalam konteks miotiub C2C12. Dengan menggunakan analisis spektroskopi Transformasi Fourier Inframerah (FTIR) dan asai enzim, kami menunjukkan bahawa sampel polisakarida, iaitu 9S1-1, mengandungib-glukosa, a-glukosa dan manosa sebagai komposisi monosakarida danb-glukan ialah jenis utama polisakarida dalam sampel. Sampel 9S1-1 ini merangsang pengambilan glukosa dos berkeperluan dalam miotiub C2C12. Analisis lanjut menunjukkan bahawa sampel mengaktifkan protein kinase diaktifkan AMP (AMPK) tetapi bukan fosforilasi Akt serin/threonina kinase (AKT), mencadangkan bahawa rangsangan adalah sandaran AMPK. Selain itu, kami menunjukkan bahawa kompaun c, iaitu perencat AMPK, merencat pengambilan glukosa dalam sel yang dirangsang 9S1-1, mengesahkan keperluan AMPK dalam pengambilan glukosa yang diaktifkan oleh sampel 9S1-1. Di samping itu, ia menggalakkan protein pengangkut glukosa jenis 1 (GLUT1) tetapi bukan ekspresi protein GLUT4. Keputusan ini menunjukkan bahawa GLUT1 mungkin bertanggungjawab untuk rangsangan pengambilan glukosa dalam sel yang diaktifkan 9S1-1. Data ini menggambarkan mekanisme antidiabetis polisakarida yang dipencilkan daripada cendawan tiram kelabu dan potensi penggunaan polisakarida sebagai agen antidiabetis.

 

Kata kunci: AMPK; antidiabetis; Cendawan tiram kelabu; GLUT1; Pleurotus sajor-caju

 

RUJUKAN

Abbud, W., Habinowski, S., Zhang, J-Z., Kendrew, J., Elkairi, F.S., Kemp, B.E., Witters, L.A. & Ismail-Beigi, F. 2000. Stimulation of AMP-Activated Protein Kinase (AMPK) is associated with enhancement of Glut1-mediated glucose transport. Archives of Biochemistry and Biophysics 380(2): 347-352.

Abdelmoez, A.M., Sardón Puig, L., Smith, J.A.B., Gabriel, B.M., Savikj, M., Dollet, L., Chibalin, A.V., Krook, A., Zierath, J.R. & Pillon, N.J. 2019. Comparative profiling of skeletal muscle models reveals heterogeneity of transcriptome and metabolism. American Journal of Physiology-Cell Physiology 318(3): C615-C626.

Al-Khalili, L., Forsgren, M., Kannisto, K., Zierath, J.R., Lönnqvist, F. & Krook, A. 2005. Enhanced insulin-stimulated glycogen synthesis in response to insulin, metformin or rosiglitazone is associated with increased mRNA expression of GLUT4 and peroxisomal proliferator activator receptor gamma co-activator 1. Diabetologia 48(6): 1173-1179.

Aramabašić Jovanović, J., Mihailović, M., Uskoković, A., Grdović, N., Dinić, S. & Vidaković, M. 2021. The effects of major mushroom bioactive compounds on mechanisms that control blood glucose level. Journal of Fungi (Basel, Switzerland) 7(1): 58.

Association, A.D. 2021. Addendum. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes - 2021. Diabetes Care 2021: 44 (Suppl. 1): S15-S33. Diabetes Care 44(9): 2182.

Ben-Abraham, R., Gazit, V., Vofsi, O., Ben-Shlomo, I., Reznick, A.Z. & Katz, Y. 2003. β-phenylpyruvate and glucose uptake in isolated mouse soleus muscle and cultured C2C12 muscle cells. Journal of Cellular Biochemistry 90(5): 957-963.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1): 248-254.

Casadei, L., Vallorani, L., Gioacchini, A.M., Guescini, M., Burattini, S., D’Emilio, A., Biagiotti, L., Falcieri, E. & Stocchi, V. 2009. Proteomics-based investigation in C2C12 myoblast differentiation. European Journal of Histochemistry53(4): 261-268.

Chakraborty, S. & Devi Rajeswari, V. 2022. Biomedical aspects of beta-glucan on glucose metabolism and its role on primary gene PIK3R1. Journal of Functional Foods 99: 105296.

Chaudhury, A., Duvoor, C., Reddy Dendi, V.S., Kraleti, S., Chada, A., Ravilla, R., Marco, A., Shekhawat, N.S., Montales, M.T., Kuriakose, K., Sasapu, A., Beebe, A., Patil, N., Musham, C.K., Lohani, G.P. & Mirza, W. 2017. Clinical review of antidiabetic drugs: Implications for Type 2 diabetes mellitus management. Frontiers in Endocrinology 8: 6.

Chen, J., Li, H., Li, T., Fu, W., Du, X., Liu, C. & Zhang, W. 2020. Alisol A-24-acetate promotes glucose uptake via activation of AMPK in C2C12 myotubes. BMC Complementary Medicine and Therapies 20(1): 22.

Chun, S., Gopal, J. & Muthu, M. 2021. Antioxidant activity of mushroom extracts/polysaccharides-Their antiviral properties and plausible AntiCOVID-19 properties. Antioxidants (Basel, Switzerland) 10(12): 1899.

Dubois, M., Gilles, K., Hamilton, J.K., Rebers, P.A. & Smith, F. 1951. A colorimetric method for the determination of sugars. Nature 168(4265): 167.

Eickelschulte, S., Hartwig, S., Leiser, B., Lehr, S., Joschko, V., Chokkalingam, M., Chadt, A. & Al-Hasani, H. 2021. AKT/AMPK-mediated phosphorylation of TBC1D4 disrupts the interaction with insulin-regulated aminopeptidase. Journal of Biological Chemistry 296: 100637.

Elsayed, E.A., El Enshasy, H., Wadaan, M.A.M. & Aziz, R. 2014. Mushrooms: A potential natural source of anti-inflammatory compounds for medical applications. Mediators of Inflammation 2014: 805841.

Ferdowsi, P.V., Ahuja, K.D.K., Beckett, J.M. & Myers, S. 2022. Capsaicin and zinc promote glucose uptake in C2C12 skeletal muscle cells through a common calcium signalling pathway. International Journal of Molecular Sciences 23(4): 2207.

Galichet, A. 2001. FTIR spectroscopic analysis of Saccharomyces cerevisiae cell walls: Study of an anomalous strain exhibiting a pink-colored cell phenotype. FEMS Microbiology Letters 197(2): 179-186.

Gebreyohannes, G., Nyerere, A., Bii, C. & Berhe Sbhatu, D. 2019. Determination of antimicrobial activity of extracts of indigenous wild mushrooms against pathogenic organisms. Evidence-Based Complementary and Alternative Medicine 2019: 6212673.

International Diabetes Federation. 2021. IDF Diabetes Atlas. 10th ed. Brussels, Belgium: International Diabetes Federation.

Jakkawanpitak, C., Hutadilok-Towatana, N. & Sermwittayawong, D. 2020. Fungal-like particles and macrophage-conditioned medium are inflammatory elicitors for 3T3-L1 adipocytes. Scientific Reports 10(1): 9437.

Kanagasabapathy, G., Kuppusamy, U.R., Abd Malek, S.N., Abdulla, M.A., Chua, K.H. & Sabaratnam, V. 2012. Glucan-rich polysaccharides from Pleurotus sajor-caju (Fr.) Singer prevents glucose intolerance, insulin resistance and inflammation in C57BL/6J mice fed a high-fat diet. BMC Complement. Altern. Med. 12: 261.

Kim, J.H., Lee, J.O., Moon, J.W., Kang, M.J., Byun, W.S., Han, J.A., Kim, S.J., Park, S.H. & Kim, H.S. 2020. Laminarin from Salicornia herbacea stimulates glucose uptake through AMPK-p38 MAPK pathways in L6 muscle cells. Natural Product Communications 15(3): 1934578X20901409.

Klip, A., McGraw, T.E. & James, D.E. 2019. Thirty sweet years of GLUT4. Journal of Biological Chemistry 294(30): 11369-11381.

Kosanić, M., Ranković, B. & Dašić, M. 2012. Mushrooms as possible antioxidant and antimicrobial agents. Iranian Journal of Pharmaceutical Research 11(4): 1095-1102.

Kumar, K., Mehra, R., Guiné, R.P.F., Lima, M.J., Kumar, N., Kaushik, R., Ahmed, N., Yadav, A.N. & Kumar, H. 2021. Edible mushrooms: A comprehensive review on bioactive compounds with health benefits and processing aspects. Foods (Basel, Switzerland) 10(12): 2996.

Liu, J., Zhang, J.F., Lu, J.Z., Zhang, D.L., Li, K., Su, K., Wang, J., Zhang, Y.M., Wang, N., Yang, S.T., Bu, L. & Ou-Yang, J.P. 2013. Astragalus polysaccharide stimulates glucose uptake in L6 myotubes through AMPK activation and AS160/TBC1D4 phosphorylation. Acta Pharmacol. Sin. 34(1): 137-145.

Manning, B.D. & Toker, A. 2017. AKT/PKB signaling: Navigating the network. Cell 169(3): 381-405.

Mian, I., Pierre-Louis, W.S., Dole, N., Gilberti, R.M., Dodge-Kafka, K. & Tirnauer, J.S. 2012. LKB1 destabilizes microtubules in myoblasts and contributes to myoblast differentiation. PloS ONE 7(2): e31583-e31583.

Ng, S.H., Mohd Zain, M.S., Zakaria, F., Wan Ishak, W.R. & Wan Ahmad, W.A.N. 2015. Hypoglycemic and antidiabetic effect of Pleurotus sajor-caju aqueous extract in normal and streptozotocin-induced diabetic rats. BioMed Research International 2015: 214918.

Nitulescu Mihai, G., Van De Venter, M., Nitulescu, G., Ungurianu, A., Juzenas, P., Peng, Q., Olaru Tudorel, O., Grădinaru, D., Tsatsakis, A., Tsoukalas, D., Spandidos, D.A. & Margina, D. 2018. The Akt pathway in oncology therapy and beyond (Review). Int. J. Oncol. 53(6): 2319-2331.

Park, H.J. 2022. Current uses of mushrooms in cancer treatment and their anticancer mechanisms. International Journal of Molecular Sciences 23(18): 10502.

Pragallapati, S. & Manyam, R. 2019. Glucose transporter 1 in health and disease. Journal of Oral and Maxillofacial Pathology 23(3): 443-449.

Sakamoto, K., McCarthy, A., Smith, D., Green, K.A., Grahame Hardie, D., Ashworth, A. & Alessi, D.R. 2005. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. The EMBO Journal 24(10): 1810-1820.

Sermwittayawong, D., Patninan, K., Jakkawanpitak, C., Phothiphiphit, S., Boonyarattanakalin, S., Inafuku, M., Oku, H., Noipha, K. & Hutadilok-Towatana, N. 2020. Effect of purified soluble polysaccharides extracted from gray oyster mushroom [Pleurotus sajor-caju (fr.) Sing.] on 3t3-l1 adipocytes. Sains Malaysiana 49(1): 103-112.

Sermwittayawong, D., Patninan, K., Phothiphiphit, S., Boonyarattanakalin, S., Sermwittayawong, N. & Hutadilok‐Towatana, N. 2018. Purification, characterization, and biological activities of purified polysaccharides extracted from the gray oyster mushroom [Pleurotus sajor‐caju (Fr.) Sing.]. Journal of Food Biochemistry 42(5): e12606.

Steinberg, G.R. & Carling, D. 2019. AMP-activated protein kinase: The current landscape for drug development. Nature Reviews Drug Discovery 18(7): 527-551.

Synytsya, A. & Novak, M. 2014. Structural analysis of glucans. Annals of Translational Medicine 2(2): 17.

Tortorella, L.L. & Pilch, P.F. 2002. C2C12 myocytes lack an insulin-responsive vesicular compartment despite dexamethasone-induced GLUT4 expression. American Journal of Physiology-Endocrinology and Metabolism 283(3): E514-E524.

Trefts, E. & Shaw, R.J. 2021. AMPK: Restoring metabolic homeostasis over space and time. Molecular Cell 81(18): 3677-3690.

Tung, Y.T., Pan, C.H., Chien, Y.W. & Huang, H.Y. 2020. Edible mushrooms: Novel medicinal agents to combat metabolic syndrome and associated diseases. Current Pharmaceutical Design 26(39): 4970-4981.

Wan, Y., Xu, X., Gilbert, R.G. & Sullivan, M.A. 2022. A review on the structure and anti-diabetic (Type 2) functions of β-glucans. Foods 11(1): 57.

Wang, T., Wang, J., Hu, X., Huang, X.J. & Chen, G.X. 2020. Current understanding of glucose transporter 4 expression and functional mechanisms. World Journal of Biological Chemistry 11(3): 76-98.

Wei, Y., Zhou, J., Yu, H. & Jin, X. 2019. AKT phosphorylation sites of Ser473 and Thr308 regulate AKT degradation. Bioscience, Biotechnology, and Biochemistry 83(3): 429-435.

Wong, C.Y., Al-Salami, H. & Dass, C.R. 2020. C2C12 cell model: Its role in understanding of insulin resistance at the molecular level and pharmaceutical development at the preclinical stage. Journal of Pharmacy and Pharmacology 72(12): 1667-1693.

Yun, H., Lee, J.H., Park, C.E., Kim, M.J., Min, B.I., Bae, H., Choe, W., Kang, I., Kim, S.S. & Ha, J. 2009. Inulin increases glucose transport in C2C12 myotubes and HepG2 cells via activation of AMP-activated protein kinase and phosphatidylinositol 3-kinase pathways. Journal of Medicinal Food 12(5): 1023-1028.

 

*Pengarang untuk surat-menyurat; email: decha.s@psu.ac.th

 

 

 

 

 

 

 

   

sebelumnya